97 research outputs found

    VLSI Implementation of an Efficient Lossless EEG Compression Design for Wireless Body Area Network

    Get PDF
    Data transmission of electroencephalography (EEG) signals over Wireless Body Area Network (WBAN) is currently a widely used system that comes together with challenges in terms of efficiency and effectivity. In this study, an effective Very-Large-Scale Integration (VLSI) circuit design of lossless EEG compression circuit is proposed to increase both efficiency and effectivity of EEG signal transmission over WBAN. The proposed design was realized based on a novel lossless compression algorithm which consists of an adaptive fuzzy predictor, a voting-based scheme and a tri-stage entropy encoder. The tri-stage entropy encoder is composed of a two-stage Huffman and Golomb-Rice encoders with static coding table using basic comparator and multiplexer components. A pipelining technique was incorporated to enhance the performance of the proposed design. The proposed design was fabricated using a 0.18 μm CMOS technology containing 8405 gates with 2.58 mW simulated power consumption under an operating condition of 100 MHz clock speed. The CHB-MIT Scalp EEG Database was used to test the performance of the proposed technique in terms of compression rate which yielded an average value of 2.35 for 23 channels. Compared with previously proposed hardware-oriented lossless EEG compression designs, this work provided a 14.6% increase in compression rate with a 37.3% reduction in hardware cost while maintaining a low system complexity

    VLSI Implementation of a Cost-Efficient Loeffler-DCT Algorithm with Recursive CORDIC for DCT-Based Encoder

    Get PDF
    This paper presents a low-cost and high-quality; hardware-oriented; two-dimensional discrete cosine transform (2-D DCT) signal analyzer for image and video encoders. In order to reduce memory requirement and improve image quality; a novel Loeffler DCT based on a coordinate rotation digital computer (CORDIC) technique is proposed. In addition; the proposed algorithm is realized by a recursive CORDIC architecture instead of an unfolded CORDIC architecture with approximated scale factors. In the proposed design; a fully pipelined architecture is developed to efficiently increase operating frequency and throughput; and scale factors are implemented by using four hardware-sharing machines for complexity reduction. Thus; the computational complexity can be decreased significantly with only 0.01 dB loss deviated from the optimal image quality of the Loeffler DCT. Experimental results show that the proposed 2-D DCT spectral analyzer not only achieved a superior average peak signal–noise ratio (PSNR) compared to the previous CORDIC-DCT algorithms but also designed cost-efficient architecture for very large scale integration (VLSI) implementation. The proposed design was realized using a UMC 0.18-μm CMOS process with a synthesized gate count of 8.04 k and core area of 75,100 μm2. Its operating frequency was 100 MHz and power consumption was 4.17 mW. Moreover; this work had at least a 64.1% gate count reduction and saved at least 22.5% in power consumption compared to previous designs

    THE STUDY OF KNEE JOINT FORCE AND TORQUE DURING STEPPING EXERCISE ON THE GROUND AND UNDERWATER

    Get PDF
    Step aerobic is a popular exercise in a fitness center. Unfortunately, stepping activities will bring lower-extremity stress and pain especially for stepping dancer in aerobic exercise (Hains et al., 1997). This study characterized the lower-extremity joint biomechanics associated with stepping activities in different environment. The impact forces on knee joint are important for walking, running and stepping in the lower-extremity, because it may cause knee joint injuries such as OA. Loading is also believed to play a role in the onset of OA (William et al., 2004). He found that the forces at the knee are considerably larger during stair climbing than during walking: the average resultant peak force during stair climbing is 5.4 times body weight (BW). Because of the decrease of the BW loading, former researchers agree that exercises underwater are better than those on the ground. Therefore, the purpose of this study is to identify the knee joint loading difference between ground and underwater stepping exercise. My hypotheses are 1) the knee force underwater is larger than on the ground during the up stepping position; 2) the knee force underwater is smaller than on the ground during the down stepping position

    Detection of Myocardial Infarction using ECG and Multi-Scale Feature Concatenate

    Get PDF
    Diverse computer-aided diagnosis systems based on convolutional neural networks were applied to automate the detection of myocardial infarction (MI) found in electrocardiogram (ECG) for early diagnosis and prevention. However; issues; particularly overfitting and underfitting; were not being taken into account. In other words; it is unclear whether the network structure is too simple or complex. Toward this end; the proposed models were developed by starting with the simplest structure: a multi-lead features-concatenate narrow network (N-Net) in which only two convolutional layers were included in each lead branch. Additionally; multi-scale features-concatenate networks (MSN-Net) were also implemented where larger features were being extracted through pooling the signals. The best structure was obtained via tuning both the number of filters in the convolutional layers and the number of inputting signal scales. As a result; the N-Net reached a 95.76% accuracy in the MI detection task; whereas the MSN-Net reached an accuracy of 61.82% in the MI locating task. Both networks give a higher average accuracy and a significant difference of p \u3c 0.001 evaluated by the U test compared with the state-of-the-art. The models are also smaller in size thus are suitable to fit in wearable devices for offline monitoring. In conclusion; testing throughout the simple and complex network structure is indispensable. However; the way of dealing with the class imbalance problem and the quality of the extracted features are yet to be discussed

    The Uses of a Dual-Band Corrugated Circularly Polarized Horn Antenna for 5G Systems

    Get PDF
    This paper presents the development of a wide-beam width, dual-band, omnidirectional antenna for the mm-wave band used in 5G communication systems for indoor coverage. The 5G indoor environment includes features of wide space and short range. Additionally, it needs to function well under a variety of circumstances in order to carry out its diverse set of network applications. The waveguide antenna has been designed to be small enough to meet the requirements of mm-wave band and utilizes a corrugated horn to produce a wide beam width. Additionally, it is small enough to integrate with 5G communication products and is easy to manufacture. This design is simple enough to have multi-feature antenna performance and is more useful for the femtocell repeater. The corrugated circularly polarized horn antenna has been designed for two frequency bands; namely, 26.5–30 GHz for the low band and 36–40 GHz for high band. The results of this study show that return-loss is better than 18 dB for both low and high band. The peak gain is 6.1 dBi for the low band and 8.7 dBi for the high band. The beam width is 105 degrees and 77 degrees for the low band and the high band, respectively. The axial ratio is less than 5.2 dB for both low and high band. Generally, traditional circularly polarized antennas cannot meet the requirements for broadband. The designs for the antennas proposed here can meet the requirements of FR2 bandwidths. This feature limits axial ratio performance. The measurement error in the current experiment comes from the high precision control on the size of the ridge

    Caries and Restoration Detection Using Bitewing Film Based on Transfer Learning with CNNs

    Get PDF
    Caries is a dental disease caused by bacterial infection. If the cause of the caries is detected early; the treatment will be relatively easy; which in turn prevents caries from spreading. The current common procedure of dentists is to first perform radiographic examination on the patient and mark the lesions manually. However; the work of judging lesions and markings requires professional experience and is very time-consuming and repetitive. Taking advantage of the rapid development of artificial intelligence imaging research and technical methods will help dentists make accurate markings and improve medical treatments. It can also shorten the judgment time of professionals. In addition to the use of Gaussian high-pass filter and Otsu’s threshold image enhancement technology; this research solves the problem that the original cutting technology cannot extract certain single teeth; and it proposes a caries and lesions area analysis model based on convolutional neural networks (CNN); which can identify caries and restorations from the bitewing images. Moreover; it provides dentists with more accurate objective judgment data to achieve the purpose of automatic diagnosis and treatment planning as a technology for assisting precision medicine. A standardized database established following a defined set of steps is also proposed in this study. There are three main steps to generate the image of a single tooth from a bitewing image; which can increase the accuracy of the analysis model. The steps include (1) preprocessing of the dental image to obtain a high-quality binarization; (2) a dental image cropping procedure to obtain individually separated tooth samples; and (3) a dental image masking step which masks the fine broken teeth from the sample and enhances the quality of the training. Among the current four common neural networks; namely; AlexNet; GoogleNet; Vgg19; and ResNet50; experimental results show that the proposed AlexNet model in this study for restoration and caries judgments has an accuracy as high as 95.56% and 90.30%; respectively. These are promising results that lead to the possibility of developing an automatic judgment method of bitewing film

    A Classification and Prediction Hybrid Model Construction with the IQPSO-SVM Algorithm for Atrial Fibrillation Arrhythmia

    Get PDF
    Atrial fibrillation (AF) is the most common cardiovascular disease (CVD); and most existing algorithms are usually designed for the diagnosis (i.e.; feature classification) or prediction of AF. Artificial intelligence (AI) algorithms integrate the diagnosis of AF electrocardiogram (ECG) and predict the possibility that AF will occur in the future. In this paper; we utilized the MIT-BIH AF Database (AFDB); which is composed of data from normal people and patients with AF and onset characteristics; and the AFPDB database (i.e.; PAF Prediction Challenge Database); which consists of data from patients with Paroxysmal AF (PAF; the records contain the ECG preceding an episode of PAF); and subjects who do not have documented AF. We extracted the respective characteristics of the databases and used them in modeling diagnosis and prediction. In the aspect of model construction; we regarded diagnosis and prediction as two classification problems; adopted the traditional support vector machine (SVM) algorithm; and combined them. The improved quantum particle swarm optimization support vector machine (IQPSO-SVM) algorithm was used to speed the training time. During the verification process; the clinical FZU-FPH database created by Fuzhou University and Fujian Provincial Hospital was used for hybrid model testing. The data were obtained from the Holter monitor of the hospital and encrypted. We proposed an algorithm for transforming the PDF ECG waveform images of hospital examination reports into digital data. For the diagnosis model and prediction model trained using the training set of the AFDB and AFPDB databases; the sensitivity; specificity; and accuracy measures were 99.2% and 99.2%; 99.2% and 93.3%; and 91.7% and 92.5% for the test set of the AFDB and AFPDB databases; respectively. Moreover; the sensitivity; specificity; and accuracy were 94.2%; 79.7%; and 87.0%; respectively; when tested using the FZU-FPH database with 138 samples of the ECG composed of two labels. The composite classification and prediction model using a new water-fall ensemble method had a total accuracy of approximately 91% for the test set of the FZU-FPH database with 80 samples with 120 segments of ECG with three labels

    Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph

    Get PDF
    Apical lesions, the general term for chronic infectious diseases, are very common dental diseases in modern life, and are caused by various factors. The current prevailing endodontic treatment makes use of X-ray photography taken from patients where the lesion area is marked manually, which is therefore time consuming. Additionally, for some images the significant details might not be recognizable due to the different shooting angles or doses. To make the diagnosis process shorter and efficient, repetitive tasks should be performed automatically to allow the dentists to focus more on the technical and medical diagnosis, such as treatment, tooth cleaning, or medical communication. To realize the automatic diagnosis, this article proposes and establishes a lesion area analysis model based on convolutional neural networks (CNN). For establishing a standardized database for clinical application, the Institutional Review Board (IRB) with application number 202002030B0 has been approved with the database established by dentists who provided the practical clinical data. In this study, the image data is preprocessed by a Gaussian high-pass filter. Then, an iterative thresholding is applied to slice the X-ray image into several individual tooth sample images. The collection of individual tooth images that comprises the image database are used as input into the CNN migration learning model for training. Seventy percent (70%) of the image database is used for training and validating the model while the remaining 30% is used for testing and estimating the accuracy of the model. The practical diagnosis accuracy of the proposed CNN model is 92.5%. The proposed model successfully facilitated the automatic diagnosis of the apical lesion

    Missing Teeth and Restoration Detection Using Dental Panoramic Radiography Based on Transfer Learning With CNNs

    Get PDF
    Common dental diseases include caries, periodontitis, missing teeth and restorations. Dentists still use manual methods to judge and label lesions which is very time-consuming and highly repetitive. This research proposal uses artificial intelligence combined with image judgment technology for an improved efficiency on the process. In terms of cropping technology in images, the proposed study uses histogram equalization combined with flat-field correction for pixel value assignment. The details of the bone structure improves the resolution of the high-noise coverage. Thus, using the polynomial function connects all the interstitial strands by the strips to form a smooth curve. The curve solves the problem where the original cropping technology could not recognize a single tooth in some images. The accuracy has been improved by around 4% through the proposed cropping technique. For the convolutional neural network (CNN) technology, the lesion area analysis model is trained to judge the restoration and missing teeth of the clinical panorama (PANO) to achieve the purpose of developing an automatic diagnosis as a precision medical technology. In the current 3 commonly used neural networks namely AlexNet, GoogLeNet, and SqueezeNet, the experimental results show that the accuracy of the proposed GoogLeNet model for restoration and SqueezeNet model for missing teeth reached 97.10% and 99.90%, respectively. This research has passed the Research Institution Review Board (IRB) with application number 202002030B0

    A Power-Efficient Multiband Planar USB Dongle Antenna for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) had been applied in Internet of Things (IoT) and in Industry 4.0. Since a WSN system contains multiple wireless sensor nodes, it is necessary to develop a low-power and multiband wireless communication system that satisfies the specifications of the Federal Communications Commission (FCC) and the Certification European (CE). In a WSN system, many devices are of very small size and can be slipped into a Universal Serial Bus (USB), which is capable of connecting to wireless systems and networks, as well as transferring data. These devices are widely known as USB dongles. This paper develops a planar USB dongle antenna for three frequency bands, namely 2.30–2.69 GHz, 3.40–3.70 GHz, and 5.15–5.85 GHz. This study proposes a novel antenna design that uses four loops to develop the multiband USB dongle. The first and second loops construct the low and intermediate frequency ranges. The third loop resonates the high frequency property, while the fourth loop is used to enhance the bandwidth. The performance and power consumption of the proposed multiband planar USB dongle antenna were significantly improved compared to existing multiband designs
    • …
    corecore